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Abstract

Methods for simulating the critical near-wall region in hydrodynamic models of gas micro-flows are discussed. Two important non-equi-
librium flow features – velocity slip at solid walls, and the Knudsen layer (which extends one or two molecular mean free paths into the gas
from a surface) – are investigated using different modelling approaches. In addition to a discussion of Maxwell’s slip boundary condition, a
newly implemented ‘wall-function’ model that has been developed to improve hydrodynamic simulations of the Knudsen layer is described.
Phenomenological methods are compared to physical modelling and it is shown that, while both simulation types have merit, and both can
quantitatively improve results in most cases, there are drawbacks associated with each approach. Phenomenological techniques, for exam-
ple, may not be sufficiently general, whilst issues with applicability and stability are known to exist in some physical models.

It is concluded that, at present, neither approach is unambiguously preferable to the other, and that both physical and phenomeno-
logical modelling should be the subject of future work.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Gas microsystems present a unique engineering chal-
lenge in that, even when operating at atmospheric pres-
sures, they display important physical phenomena
attributable to rarefaction of the flow. The physical effects
of gas rarefaction can be particularly significant close to
solid surfaces, and so they have important implications
for system performance at the microscale in that they can
directly affect quantities of interest, such as drag force
and mass flowrate (Gad-el-Hak, 1999). Numerical simula-
tions of such flows, therefore, need to be able to capture
observed non-equilibrium characteristics.

In this paper we focus on the near-wall region, in partic-
ular on the occurrence of velocity slip and the presence of
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the Knudsen layer in some fundamental low speed gas
flows. Specifically, we examine how these phenomena
may be captured numerically in hydrodynamic models of
the flow, i.e., computational fluid dynamics (CFD). The
application of the velocity slip boundary condition pro-
posed by Maxwell (1879) is discussed, and two methods
for the simulation of the Knudsen layer in gas microsys-
tems are described. We compare and contrast the underly-
ing assumptions of each method and show some key
numerical results, before proposing and discussing some
alternate modelling techniques.
2. Gas velocity slip at solid surfaces

Perhaps the most widely known aspect of non-equilib-
rium gas flows is the fact that the velocity of a gas close
to a surface is not always the same as the velocity of that
surface. Describing this velocity slip accurately, however,
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is still an active area of research. A simple planar Poiseuille
micro-flow case illustrates the importance of the phenome-
non: for a Knudsen number, Kn, of 0.05 (where Kn is the
ratio of the molecular mean free path of the gas to the
channel height), the mass flow rate is typically around
15% greater than would be expected from conventional
no-slip fluid dynamic models, with some 70% of this
increase arising from the effect of slip at the channel walls
(Lockerby et al., 2005a).

The classical description of the velocity slip in rarefied
gases flowing over a solid surface is the Maxwell slip condi-

tion, and this is widely implemented in current rarefied gas
flow solvers. Maxwell’s original expression for the slip,
applicable to any geometry, relates the tangential slip
velocity of gas at a solid surface, ~uslip, to the tangential
shear stress, ~s, and heat flux, ~q (Maxwell, 1879). Written
in vector form for application to flows over three-dimen-
sional surfaces, the Maxwell slip condition is:

~uslip ¼ �
ð2� rÞ

rl
k~s� 3

4

NPrðc� 1Þ
cp

~q; ð1Þ

where~s ¼ ð~in �PÞ � ð1�~in~inÞ and~q ¼ Q � ð1�~in~inÞ, with an
arrow denoting a vector quantity. The tangential momen-
tum accommodation coefficient is r, l is the gas viscosity
at the wall, k the molecular mean free path at the wall,
NPr the Prandtl number, c the specific heat ratio, and p

the gas pressure at the wall. A unit vector normal to, and
away from, the wall is~in, with P the stress tensor at the
wall, 1 the identity tensor, and Q the heat flux vector at
the wall. Here, and throughout this paper, the molecular
mean free path is defined as follows:

k ¼ l
ffiffiffiffiffiffiffiffi
p

2qp

r
; ð2Þ

where q is the gas density.
It should be noted that, in his original paper, Maxwell

used a phenomenological argument to derive his boundary
condition, so his original expression, Eq. (1), does not
directly model the physical process that generates slip,
i.e., intermolecular interaction (Maxwell, 1879). This is evi-
dent in the fact that Eq. (1) requires a ‘momentum accom-
modation coefficient’ for each particular gas/surface
combination. Typically, accommodation coefficients may
only be inferred from experimental results, rather than
directly measured.

Maxwell’s phenomenological slip condition can, how-
ever, provide useful predictions of certain gas micro-flows
if it is correctly implemented for the geometry of interest.
If we assume no streamwise variation in wall-normal veloc-
ity (i.e., the solid bounding surfaces of the flow are non-
rotating and planar) and the Navier–Stokes–Fourier
constitutive expressions are used for the viscous stress
and heat flux terms in Eq. (1), the conventional expression
of Maxwell slip is:

us ¼
ð2� rÞ

r
k

dux

dn
þ 3

4

l
qT

dT
dx
; ð3Þ
where n is the co-ordinate normal to the wall, x is the co-
ordinate tangential to the wall, ux is the x component of
the gas velocity, us is the x component of the slip velocity,
and q and T are the density and temperature of the gas at
the wall, respectively. Eq. (3) has been clearly shown to im-
prove predictions for flow in gas microsystems where, as we
would expect, the no-slip condition becomes increasingly
inadequate as the Knudsen number increases (Lockerby
and Reese, 2003).

While Eq. (3) is the form of the Maxwell slip condition
conventionally implemented in numerical solutions, it is
important to note that it is not applicable to surfaces with
curvature. For example, for a surface in two dimensions
(and again using the Navier–Stokes–Fourier constitutive
relations), Eq. (1) becomes

us ¼
ð2� rÞ

r
k

dux

dn
þ dun

dx

� �
þ 3

4

l
qT

dT
dx
; ð4Þ

where un is the gas velocity normal to the wall (Lockerby
et al., 2004).

The additional term featuring in Eq. (4) but not in Eq.
(3) can have a significant influence on the velocity slip,
and the overall accuracy of the numerical simulation of
the flow field. For example, we have recently shown that
accurate CFD predictions of both velocity profile inversion
in cylindrical micro-Couette flow, and the skin friction
drag on a microsphere, are only achieved when using Eq.
(1) (or using Eq. (4) for two-dimensional cases) (Lockerby
et al., 2004).

3. The Knudsen layer

In addition to velocity slip at bounding surfaces, the so-
called Knudsen layer extends one or two molecular mean
free paths from the surface into a gas flow. This region is
characterised by strong departures from linearity of the
stress/strain-rate relationship and, as such, cannot be cap-
tured by the Navier–Stokes–Fourier constitutive relations.

The Knudsen layer is, however, an important compo-
nent of the flow in many microsystem configurations, and
should therefore be incorporated within any comprehen-
sive numerical simulation technique. For example, in the
planar Poiseuille micro-flow case discussed above, where
the mass flowrate is 15% greater than expected, 30% of this
increase can be attributed to the non-linear structure of the
Knudsen layer (Lockerby et al., 2005a).

The most common approach is to account for (rather
than model) the Knudsen layer by employing fictitious slip
boundary conditions at the bounding surface (u�slip in
Fig. 1). Higher order slip conditions are also fictitious, or
macro, slip conditions which do not directly capture the
Knudsen layer, only prescribing a different value of slip
velocity at the wall (Lockerby et al., 2004). This slip does,
at least, provide an accurate solution outside the Knudsen
layer (the dashed line in Fig. 1) if the Navier–Stokes equa-
tions are used as the hydrodynamic model. If the actual, or
micro, velocity slip (uslip) is applied at the boundary, the



Fig. 1. Schematic of the velocity structure of the Knudsen layer near a
wall in a shear flow, with a comparison of two types of slip boundary
condition.
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prediction of the velocity both inside and outside the
Knudsen layer is poor (the dash-dot line in Fig. 1).

Note that either type of velocity slip condition can be
implemented for planar surfaces simply by using the Max-
well slip condition with a factor in front of the first term on
the right hand side of Eq. (3): Maxwell assumed this factor
to be 1.0 (Maxwell, 1879); in the case of macro slip, kinetic
theory predicts this factor as 1.146 (Cercignani, 1990); for
actual slip, this factor should be 0.8 (Lockerby et al.,
2005b).

The major drawback to the macro slip approach is that
some part of the flow field is then by definition fictitious.
For high Knudsen number micro-flows, this can be a sig-
nificant proportion of the entire flow. An alternative
approach is to apply the Navier–Stokes equations with
macro slip boundary conditions to the entire flow field,
but then to make a kinetic theory-based correction to either
the velocity field, or to an averaged property of interest,
such as the mass flowrate. This approach, however, cannot
be applied to micro-flow geometries of any complexity.

In the following sections we describe two possible
approaches to simulating the Knudsen layer: one newly-
implemented phenomenological model, and one physical
approach. We compare their effectiveness on simple,
incompressible flow cases.

3.1. A wall-function description of the Knudsen layer

A numerically economical approach to incorporating
the Knudsen layer in simulations of gas micro-flows is to
use a wall-function to describe the relationship between vis-
cous stress and strain-rate in the near-wall region. This
approach is akin to that used in conventional macro-scale
turbulence modelling. Whilst it is a phenomenological
approach, like that of Maxwell’s to slip, the wall-function
method may be able to capture some of the essential
features of micro-flows. It also may have a more general
applicability across a range of rarefied flow systems than
would at first be suggested by the assumptions of flow
and geometry, outlined below, on which it is based.

Linearised kinetic theory indicates that the velocity pro-
file through a Knudsen layer close to a planar wall in a
monatomic gas flow subject to a uniform shear stress is

u ¼ � s
l
ðnþ f� kIðn=kÞÞ; ð5Þ

where n is the normal distance from the planar wall, s is the
uniform shear stress, l is the gas viscosity, k is the mean
free path, and f is a constant (Cercignani, 1990). The veloc-
ity correction function I(n/k) can be curve-fit from kinetic
theory data (Lockerby et al., 2005b) to be:

Iðn=kÞ � 7

20
1þ n

k

� ��2

: ð6Þ

Differentiating Eq. (5) then produces an expression relating
stress to the strain-rate that is appropriate throughout the
Knudsen layer:

du
dn
¼ � s

l
Wðn=kÞ; ð7Þ

which can be used in place of the Navier–Stokes relation.
The wall-function, W (n/k), in Eq. (7) is given by

Wðn=kÞ ¼ 1� k
d

dn
Iðn=kÞ � 1þ 7

10
1þ n

k

� ��3

: ð8Þ

The limitations of this model are evident in its basic
assumptions: low Mach number flow; relatively low Knud-
sen number; planar surfaces with diffuse molecular reflec-
tion. This model does, however, also improve, both
qualitatively and quantitatively, predictions of flow over
non-planar surfaces (Lockerby et al., 2005b). It is accurate
in planar cases for Knudsen numbers as high as Kn = 0.1,
and the approach remains valid as Kn! 0: as Kn de-
creases, the wall-function W (n/k)! 1, and the linear rela-
tionship between stress and strain-rate (assumed in the
Navier–Stokes equations) is restored. As an example, we
show a comparison of the performance of this model with
direct simulation Monte-Carlo (DSMC) data on a bench-
mark case in Fig. 2.

It should be noted that the wall-function approach will
only give improved results (as compared to using macro
slip boundary conditions) within the Knudsen layer itself.
Moreover, the stress variation throughout the Knudsen
layer from the wall-function method is identical to that cal-
culated using fictitious slip boundary conditions. For
example, in planar micro-Couette flow, the wall shear
stress predicted by the Navier–Stokes equations with a
wall-function is the same as the wall shear stress predicted
by the Navier–Stokes equations with an equivalent macro
slip boundary condition (here, an ‘equivalent’ slip condi-
tion refers to one that predicts the same velocity profile
outside of the Knudsen layer). In this case, the improve-
ment that is provided by the wall-function is limited to
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Fig. 2. Comparison of the velocity profile through the Knudsen layer in
Kramer’s micro-flow problem (planar wall at x = 0); DSMC results for
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the Knudsen-layer velocity profile. The non-linearity in the
stress/strain-rate relationship that is introduced through
the wall-function in Eq. (7) maintains the correct constant
shear stress of the Couette flow case.

This wall-function method has the strong advantage of
being very easy to implement in a Navier–Stokes flow sol-
ver simply by substituting the real gas viscosity, l, with the
scaled quantity, lW�1 (which tends to the actual gas viscos-
ity in the flow outside the Knudsen layer).

The effective scaling of the gas viscosity in this way will,
however, impact other areas of the flow calculation.
Although this is a phenomenological approach, and not
one developed to model the physical process directly, it is
still important that any such additional effects resulting
from the chosen method of implementation are both rea-
sonable and physically consistent.

One consequence of the effective gas viscosity scaling is
that the normal strain-rate is affected similarly to the shear
strain-rate. This non-linear coupling of normal-to-tangen-
tial quantities implies that there is an equivalent Knudsen
layer in the wall-normal velocity component. This type of
Knudsen layer has been predicted by Sone (1990), who also
proposed wall-normal macro slip conditions (a slip into a
non-permeable wall) in order to accommodate this phe-
nomenon within a Navier–Stokes solution.

Effective gas viscosity scaling also impacts the calcula-
tion of the mean free path, as required for the micro slip
boundary condition Eq. (3). The definition for the mean
free path used in Maxwell’s boundary condition is given
in Eq. (2). This definition is based on equilibrium gas prop-
erties and shows the mean free path to be proportional to
the viscosity. The fact that this definition is affected by the
scaling could be considered as a correction to account for
departures from equilibrium near the wall, rather than an
alteration to the actual mean-free-path itself. At first glance,
the reduction in the effective mean free path might appear to
reduce the slip predicted by Maxwell’s boundary condition,
but this is balanced by an exactly equal increase in strain-
rate at the wall, resulting in the same slip prediction as
would be obtained without the wall-function – the velocity
micro slip condition is independent of the wall-function, and
this is consistent with the wall-function’s derivation.

Through the constant Prandtl number, our effective gas
viscosity scaling will also alter thermal conductivity within
the Knudsen layer. This implies the existence of a thermal
Knudsen layer, which is well documented. Fig. 3 shows a
thermal Knudsen layer within a half space predicted by
the current wall-function, compared with a result from
kinetic theory (Loyalka, 1989) and a result with no wall-
function. The wall-layer result has been obtained by an
analytical solution of the one-dimensional steady energy
equation – the agreement with the kinetic theory solution
is reasonable. Note, each result in Fig. 3 has been obtained
with the same boundary conditions and the same pre-
scribed and uniform heat-flux in the gas.

One further noteworthy practical implication of the
wall-function technique is that it cannot be implemented
in conjunction with governing hydrodynamic equations
that have been derived assuming constant viscosity. To
illustrate this point we consider the momentum equations,
in tensor form:

oðquiÞ
ot
þ oðqukuiÞ

oxk
¼ � op

oxi
þ osik

oxk
; ð9Þ

with ui the velocity in the ith direction and sik the second
order stress tensor. The divergence of the Navier-Stokes
stress tensor is the second term on the right hand side of
Eq. (9), and can be expanded as follows:

osik

oxi
¼ oðl�ikÞ

oxi
¼ l

o�ik

oxi
þ ol

oxi
�ik; ð10Þ

where �ik is the strain-rate tensor. In calculations where the
viscosity is assumed to be constant (as in isothermal condi-
tions, for example), the second term on the right hand-side
of Eq. (10) is zero, and is often removed from numerical
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solvers. Any implementation of the wall-function tech-
nique, however, implies spatial variation in effective viscos-
ity in a direction normal to the wall. Thus, this term
coupling the variation of effective viscosity to the strain-
rate cannot be omitted – even in the isothermal case.

Isothermal Couette flow between rotating cylinders, for
example, is a case in which no reasonable solution may be
obtained using the wall-function technique unless the cou-
pled velocity–viscosity terms from Eq. (10) are retained in
the momentum equations. In the case of a rotating inner
cylinder and a stationary outer cylinder, direct simulation
Monte Carlo (DSMC) molecular dynamics simulations
predict an inverted tangential velocity profile, that is to
say, the gas velocity increases with radial distance from
the moving cylinder (Tibbs et al., 1997). This case has been
investigated previously in order to compare results
obtained using Eq. (4) in place of Eq. (3) (Lockerby
et al., 2004; Barber et al., 2004), however the wall-function
approach has not previously been applied to this problem.

Fig. 4 illustrates our results for tangential velocity in the
rotating Couette flow problem. The inner and outer cylin-
ders are concentric, with respective radii of 3k and 5k, and
the gas flowing between the cylinders is argon at standard
temperature and pressure (STP). The tangential momen-
tum accommodation coefficient, r, is 0.1. The figure com-
pares the velocity profile predictions of several numerical
models with DSMC data. Both no-slip and conventional
slip (Eq. (3)) simulations fail to predict inversion of the
velocity profile. Maxwell’s original slip equation, in this
case Eq. (4), is seen to predict an inverted velocity profile,
although it cannot capture the form of the DSMC results.
When the wall-function method (shown as the solid line) is
applied, not only is good general agreement with Maxwell’s
original slip condition observed, but the shape of the veloc-
ity profile is seen to approach that of the DSMC data. The
slight dip in the profile near the inner wall and the reduc-
tion in gradient towards the outer cylinder can clearly be
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seen. Quantitative agreement with the DSMC remains
poor, but it should be noted that for this high Knudsen
number case (Kn = 0.5), we are operating at the very edge
of applicability for continuum models, and close numerical
agreement is not expected.

Although the wall-function method has been shown to
be effective in many applications, it is still the case that
the model is phenomenological and, as such, not perfectly
general. It has been shown in other work, for example, that
the choice of accommodation coefficient in Maxwell’s slip
equation, Eq. (1), can have a notable impact on flowfield
results (Myong et al., 2005). In the current wall function
model, the form of the Knudsen layer is independent of
the accommodation coefficient. Recent work by Zheng
et al. addresses this issue with the formulation of a wall-
function that incorporates the accommodation coefficient
(Zheng et al., 2006). This recent research will be included
in future numerical models with the aim of increasing the
generality of the wall-function approach. Further work will
also include more detailed verification of the wall-function
method with available experimental results for a range of
micro-flow cases.

3.2. Higher-order continuum equations

While the Knudsen layer wall-function technique is one
way of extending hydrodynamic models into the rarefied
regime, the potential of higher-order continuum equations
(derived from kinetic theory to be appropriate for high
Knudsen number flows) is presently being explored. These
have shown promise in the field of hypersonic aerodynam-
ics, in particular, shock wave structure, and may also be a
suitable model for rarefied flows in microsystems.

It is well-known that continuum expressions for the vis-
cous stress and heat flux in gases may be derived from the
Boltzmann equation via either a Kn-series solution (known
as the Chapman–Enskog approach) or by an expansion of
the distribution function as a series of Hermite tensor poly-
nomials. To first order (i.e., for near-equilibrium flows)
both approaches yield the Navier–Stokes–Fourier equa-
tions. However, the solution methods can be continued
to second and higher orders, incorporating more and more
of the salient characteristics of a rarefied flow. The classical
second-order stress and heat flux expressions are the Bur-

nett equations (from the Chapman–Enskog approach),
and the Grad 13 moment equations (from the Hermite poly-
nomial method). These can be seen as corrections to the
Navier–Stokes constitutive relations to make them appro-
priate to flows which are more non-equilibrium in nature.

However, differing physical interpretations of the solu-
tion methods at second and higher orders, have recently
led to a variety of different, competing equation sets. Space
considerations preclude listing these complicated and
lengthy sets of equations here, but the reader is referred
to previous literature that details the derivation of the main
sets: the BGK-Burnett (Balakrishnan, 2004), Augmented

Burnett (Zhong et al., 1993), Regularized Burnett (Jin and
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Slemrod, 2001) and R13 (Struchtrup and Torrilhon, 2003)
equations.

While each purports to be the proper high-order correc-
tion to the stress and heat flux (there is no disagreement
about the form of the Navier–Stokes–Fourier equations
at first-order), no single equation set has demonstrated uni-
versal superiority in the prediction of rarefied gas flows – it
is an active research question as to which is the ‘best’ set of
equations. All of the higher-order equation sets have disad-
vantages, which can include:

• high nonlinearity, often requiring exotic and compli-
cated numerical solution methods;

• pathological instability in their numerical solution;
• dependence on the (moving) frame of the observer;
• thermodynamic inconsistency (which may be the cause

of the numerical instability noted above), although this
issue has been claimed to be resolved (Myong, 1999);

• a critical Mach number beyond which solutions are
intractable;

• an inability to predict important non-equilibrium effects,
such as the Knudsen layer;

• unknown additional boundary conditions at solid walls
and freestream to ensure unique solutions.

A key potential benefit, however, if a physically correct
and stable set of governing high-order equations with
proper boundary conditions can be identified, is that the
equations reduce to the Navier–Stokes equations as Kn

tends to zero, so no coupling of solutions within the same
simulation is needed for mixed-density and transonic flow
fields. Additionally, and importantly, their computational
cost would be comparable to traditional CFD.

The model problem we have chosen to examine here in
order to compare the effectiveness of the wall-function
technique and certain high-order equations in capturing
the Knudsen layer, is Kramer’s problem: gas flow gener-
ated by a uniformly-applied shear stress and bounded by
one parallel plane surface. This allows us to study the
one-dimensional isothermal Knudsen layer in isolation.
DSMC data is available for comparison with our CFD
solutions; in this case of Mach 0.05, Couette flow of argon
gas, where the channel height is amply sufficient to accom-
modate the Knudsen layers on both walls without interfer-
ence with each other (Lockerby et al., 2005a).

Details of the application of the high-order equation sets
to Kramer’s problem are given in (Lockerby et al., 2005a).
We take the extra boundary conditions required from pub-
lished kinetic theory solutions to Kramer’s problem (which
closely agree, incidentally, with the DSMC data).

After the linearisation and one-dimensionalisation
appropriate for analysing Kramer’s problem, the classical
Burnett and Grad equation sets both reduce to the
Navier–Stokes equations which, as noted above, do not
capture any of the non-linearity in the Knudsen layer.
However, the other high-order equation sets we examined
(Balakrishnan, 2004; Zhong et al., 1993; Jin and Slemrod,
2001; Struchtrup and Torrilhon, 2003) do produce Knud-
sen-layer-like solutions.

The DSMC data indicates a Knudsen layer 1.4 mean free
paths thick; while the Augmented Burnett equations pro-
duce a layer 0.9 mean free paths thick; BGK-Burnett equa-
tions, 2.1; R13 equations, 2.8; and the Regularized Burnett
equations, 4.9 mean free paths thick (Lockerby et al.,
2005a). Taking the Augmented Burnett equations, there-
fore, as the closest to reproducing the DSMC data, we
can then compare the predictions of this equation set, with
those of the wall-function of Section 3.1. This comparison is
shown in Fig. 2. As can be seen, the wall-function technique
gives very good agreement with the DSMC data, marginally
better than the Augmented Burnett solution. As discussed
above, the Navier–Stokes solution from conventional
CFD does not display a Knudsen layer structure at all.

It is important to note, however, that this is only one
benchmark test case, and neither the wall-function
approach nor the Augmented Burnett equations can be
said to have proven their general usefulness; in particular,
there has been so far little or no investigation into their
ability to predict high-speed or non-isothermal flows, nor
flows in complex geometries.

4. Conclusions

In this paper some of the key aspects required in simu-
lating gas micro-flows have been investigated; specifically,
slip velocities and the Knudsen layer. The application of
Maxwell’s slip condition has been discussed, along with
two methods for incorporating the Knudsen layer into
hydrodynamic simulations at the microscale: a wall-func-
tion model that scales the viscosity of a gas to capture
the Knudsen layer, and the use of higher-order equation
sets.

While the higher-order approach offers the promise of a
new fluid dynamics that could capture the flow features
more generally (particularly in complex geometries), in
practice, empirical input is still required. The phenomeno-
logical wall-function approach may be straightforward and
easy to implement, but it could lack generality based on the
tight assumptions on which it is based.

Both approaches have distinct benefits and drawbacks,
but it is not the intention of this paper to identify which
is the better or most promising of the two. Intuitive phe-
nomenological methods can inform and inspire physical
modelling techniques, in the same way that accurately
modelling the physics of a system informs the development
of ‘broad-brush’ phenomenological techniques. In some
cases, it is also possible to directly relate the physical to
the phenomenological. An alternative to Maxwell’s slip
boundary condition, for example, would be to use the
Langmuir slip model, where velocity slip may be directly
related to the measureable potential energy of gas-surface
adsorption (Myong et al., 2005).

Consequently, it would seem that the development of
both physical modelling and phenomenological methods
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to capture non-equilibrium gas behaviour should be pur-
sued in parallel; we are investigating both approaches as
part of a funded collaborative research programme
between Strathclyde University and Daresbury Laboratory
in the UK.
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